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Comments on eikonal and sudden approximations? 
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Received 27 June 1979, in final form 21 November 1979 

Abstract. An approximation scheme is presented which leads systematically from the exact 
Moller (or scattering) operator to the eikonal approximation and then to the sudden 
approximation. In terms of the Maller (or scattering) operator, the eikonal approximation 
is local in position space and is parametrised by the average incoming free momentum. 
Carrying the procedure a step further decouples the internal and translational motions to 
produce the sudden approximation. Distorted as well as straight-line approximations are 
considered. To do so, distorted scattering conditions are presented which define distorted 
Maller, transition and scattering operators. Some properties of these operators are 
discussed. Relations with the usual Moller, transition and scattering operators are presen- 
ted. Finally, an eikonal approximation to the Maller super-operator is presented which 
does not depend explicitly upon the form of the dynamics that is used. Quantally, the 
eikonal Maller super-operator is equivalent to the eikonal Maller operator and, in the limit 
of small h, reduces to the classical eikonal Maller super-operator. This classical Maller 
super-operator gives a particle picture for the eikonal approximation in contrast to the 
traditional wave picture. 

1. Introduction 

Exponential approximations abound in the literature of scattering theory. Two parti- 
cular examples are the eikonal and sudden approximations. The purpose of this paper 
is twofold; first, to present a systematic approximation scheme which links these two 
approximations and, second, to relate the eikonal approximation to a classical particle 
picture approximation (in contrast to the traditional wave picture). 

To relate the eikonal and sudden approximations systematically it is convenient to 
review some formal scattering results and to define distorted collision operators. This is 
done in 0 2. In particular, scattering wavefunctions T(f) are usually defined (Newton 
1966, Levine 1969, Child 1974) by equating them in norm to the free wavefunctions 
d ( t )  in the distant past or future: 

These conditions define Moller operators from which transition and scattering opera- 
tors are obtained. Distorted operators (Levine 1969, Child 1974), also, have 
occasionally been considered. Here, formal distorted scattering conditions are presen- 
ted which define these distorted operators. From these formal definitions, some 
properties of the distorted operators are obtained together with their relationship to the 
usual operators. Time integral representations are used rather than the usual energy 
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2080 R E Turner 

parametrisation. An advantage of this is that it avoids the formal necessity of introduc- 
ing convergence factors. 

The scattering condition, equation ( l . l ) ,  is not a unique prescription because any 
reference scattering wavefunction, c#Jo(t): can be used in place of d i t ) .  Such a reference 
wavefunction requires a distorted scattering condition, namely 

IIW) -Pc(Ho)c#Jo(t)ll --3 I + T W  0.  (1.2) 

Here, PJHo) is the projection onto the continuum eigenstates of the reference 
Hamiltonian Ho. The inclusion of this projection ensures that the reference wavefunc- 
tion do(t) is indeed a scattering wavefunction, for, in general, Ho may have bound 
states. Equation (1.2) defines distorted Maller operators from which distorted tran- 
sition and distorted scattering operators can be obtained. 

Scattering information, such as the cross section, can be extracted directly from the 
distorted operators and the (known) reference scattering wavefunction &(t ) .  On the 
other hand, the reference scattering wavefunction can be related to the free wavefunc- 
tions by reference operators. In this way, the usual operators can be connected with 
products of distorted and reference operators. 

Two standard procedures for obtaining the eikonal approximation exist. In one of 
these (see, for example, Schiff 1968), the position representation of the wavefunction is 
written approximately as the exponential of a function involving a path integral of the 
potential. In the other procedure (see, for example, Joachain and Quigg 1974), the 
wavefunction is written in terms of the free Green function. A high-energy approxi- 
mation to this Green function then leads to the eikonal wavefunction. 

Kather than using one of these procedures, a different technique for obtaining the 
eikonal approximation is presented in § 3. It has the advantage of being readily related 
to the sudden approximation without need of expansions in any basis set. The 
procedure begins with the Maller (or scattering) operator written in terms of the motion 
group for the interaction picture wavefunction. This group involves a nonlocal poten- 
tial that depends upon time through a straight-line trajectory. This potential is localised 
in position space by partially randomising the initial conditions of the trajectory (Turner 
and Dahler 1980). The eikonal Maller (or scattering) operators produced in this way 
are, themselves, local in position space. Furthermore, these operators depend 
parametrically on the average of the incident free momentum which occurs also in the 
associated eikonal wavefunction. 

In § 2 a formal prescription has been given for defining distorted collision operators. 
Then, in § 3,  it is shown how one can proceed from the distorted Maller (or scattering) 
operator to the corresponding classical trajectory distorted eikonal approximation. The 
usual Maller operator is the product of the distorted Mprller operator and a reference 
Merller operator; a similar result holds for the scattering operator. Making eikonal 
approximations to both the distorted and reference operators defines a double eikonal 
approximation for the usual collisional operators. This double eikonal approximation 
is compared with the distorted eikonal approximation of McCann and Flannery (1975). 

For comparison with the,sudden approximation (Pack 1972, Stallcop 1974, Kramer 
and Bernstein 1964), an internal degree of freedom is introduced in 8 4. This leads to 
the multichannel eikonal approximations of McCann and Flannery (1975) for both 
rectilinear and curved trajectories. Although local in translational position space, the 
eikonal approximations still couple the translational and internal motions. These 
motions can be decoupled by completely randomising the initial conditions of the 
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trajectories involved in the potentials (Turner and Dahler 1980). When this 
randomisation is performed, the sudden approximations result. In the standard 
derivations of the sudden approximation (see, for example, Stallcop 1974, Goldflam et 
a1 1977), this decoupling of the internal and translational motions is made in one fell 
swoop. Here, it is shown that by resolving the decoupling into two successive steps, one 
obtains the eikonal approximation for the intermediate stage. 

The eikonal approximation was first introduced in geometric optics as an approxi- 
mation to the classical wave equation (for a review, see, for example, Goldstein 1950, 
Born and Wolf 1959). This wave concept was then applied (Molibre 1947, Schiff 1956, 
Glauber 1959) as an approximation to the continuum wavefunctions in the quantum 
description of particle scattering events. Here, in 9 5, the eikonal approximation is 
applied to the scattering density operator through the Moller super-operator, a scheme 
which is equivalent to the usual eikonal wavefunction approximation. In the limit of 
small h, the classical eikonal Moller super-operator is obtained. It provides a classical 
(phase-point to phase-point) particle picture of the eikonal approximatioil. 

Through the use of observables and statistical states (Turner 1978) scattering 
information such as generalised cross sections can be expressed in a formalism that is 
valid for both classical and quantum mechanics. This has the advantage that the effects 
of approximation schemes on both mechanics can be compared easily. Such a scheme is 
the eikonal approximation. Statistical scattering states (density operators and dis- 
tribution functions) are related to free incoming statistical states by the Moller 
super-operator (Snider and Sanctuary 1971, Miles and Dahler 1970). Following the 
method used in 8 3 to obtain the eikonal Moller operator, the eikonal Merller super- 
operator is obtained. This definition is independent of the mechanics which is used in 
the formal description. Of course, explicit evaluations using this approximation will be 
different in each mechanics. In particular, the quantal eikonal Moller super-operator is 
presented in a phase-space representation. The phase-space representation used is the 
Weyl (1927) correspondence (Wigner (1932) equivalence representation). Using the 
relation between the Moller super-operator and the Moller operator which has been 
established previously by Jauch et a1 (1968) and Turner (1977), this eikonal Mprller 
super-operator is shown to be equivalent to the eikonal Moller operator. The classical 
limit of this eikonal Moller super-operator is presented. Finally, the phase-space 
representation of the classical eikonal Moller super-operator is obtained directly from 
the general definition. It is equal to the classical limit of the quantal eikonal Moller 
super-operator as dictated by the correspondence principle. This classical eikonal 
Moller super-operator gives a phase-point to phase-point particle description of the 
eikonal approximation. 

2. Distorted operators 

2.1. Standard operators 

Binary collisions are considered. The Hamiltonian, H, is written as the sum of the 
kinetic energy K and a potential V. Associated with the Hamiltonian H is the 
wavefunction " ( t )  which satisfies the Schrodinger equation 
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In order to identify Y( t )  as a scattering wavefunction (see, for example, Newton 1966, 
Levine 1969), its norm is set equal in the distant past to that of the incoming free 
wavefunction, 

l 4 i n ( t ) >  = exp[-iK(t - t’)/hI/4in(t’))* (2.2) 
The scattering condition, equation (1, 1), becomes 

llq(t) - 6 n ( r ) l l *  I + - - O o  0. (2.3) 

This prior condition defines the Merller operator a“’, 
CL‘” = lim exp(iHt/h) exp(-iKt/h) = 1 - (i/h) 1 ds exp(iHs/h) V exp(-iKs/h), 

0 

-m r+-m 

(2.4) 
where the last form is the time integral of a Lippmann-Schwinger equation. Making use 
of the identity 

exp(iHs/h) = exp(iKs/h) + (i/A) d t  exp(iKr/h) V exp(-iH(t- s ) / h ) ,  (2.5) 

equation (2.4) becomes 
0 

R“” = 1 - (i/h) ds exp(iKs/h)t,, exp(-iKs/h) 
-a 

where to, = VR‘” is the transition operator. Furthermore, the scattering state wave- 
function Y ( t )  is given by 

W t ) )  = R(+)141n(~)), (2.7) 

in terms of the Merller operator R‘” and the incoming free wavefunction, 4in(t). 
The Merller operator Cl(+) connects the incoming free wavefunction &(f ) ,  equation 

(2.2), with the complete wavefunction Y(r) at all times t. For times in the distant future, 
the particles will be described by an outgoing free wavefunction r$out(t), provided that 
no capture states are available (a capture state is one which is free in the distant past, but 
bound in the distant future). For purposes of defining a scattering operator, Hamil- 
tonians with capture states (see, for example, Taylor 1972) are excluded from the 
following discussion. 

The outgoing free wavefunction 40,t(t) provides an alternative means of charac- 
terising Y( t )  as a scattering wavefunction. In particular, the norm of the wavefunction 
Y( t )  is required to equal that of &,ut(t) in the distant future, i.e. 

in contrast to equation (2.3). This condition defines the post Mprller operator a(-): 

CL(-)= lim exp(iHt/h) exp(-iKt/h) = 1 +(i/h) I ds exp(iHs/h)V exp(-iKs/h) 
m 

0 !++m 

= 1 + ( i / A )  J ds exp(iKs/h) VfI-’ exp(-iKs/h). (2.9) 
0 

The last two forms of equation (2.9) are the time integral representations of the usual 
Lippmann-Schwinger equations (see, for example, Levine 1969). Thus the scattered 
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wavefunction, .\u(t), can be written in terms of the Mplller operator Cl(-)  and the outgoing 
free wavefunction 40,t(t); in particular, 

IW)) = f l ' - )bo" t (d ) .  (2.10) 

Mplller operators are partial isometries (see, for example, Newton 1966), as exemplified 
by their properties, 

fl"""'' = 1 ~'"p'= P J H ) ,  (2.11) 

where P,(H) is a projection onto the continuum eigenstates of H. 
Combining' equations (2.10) and (2.7) while using the partial isometries of the 

Mplller operators, the free outgoing and free incoming wavefunctions are connected 
through the scattering operator 

(2.12) S ~ fl""fl'+' 

by the equation 

14out(t))  = S l 4 i n ( t ) ) *  (2.13) 

Using the isometry of the Moller operators, the scattering operator is found to be 
unitary (see, for example, Levine 1966). The scattering operator can also be written in 
terms of the transition operator when the integral forms of the Mplller operators are 
used. In particular, it becomes 

S = Cl'"'Cl'" = (1 - (i/h) loW ds exp(iKs/h) V exp(-iHs/h))Cl'+' 

m 

= 1 - (i/h) I ds exp(iKs/h)t,, exp(-iKs/h), 
-W 

(2.14) 

where use has been made of the intertwining relation (see appendix 1). 
So far the dynamics has been presented in the Schrodinger picture. An alternative 

procedure is to use an interaction picture. To define the interaction picture, the 
potential, V, is written as the sum of a reference potential, Vo, and a potential VI. The 
reference Hamiltonian is defined as the sum Ho = K + VO while the complete Hamil- 
tonian becomes H = Ho + VI. The interaction picture wavefunction is then defined by 

I$(t)) = exp(iHot/h)lW)) (2.15) 

and satisfies the wave equation 

(2.16) 

The motion of this interaction picture wavefunction is generated by the time-dependent 
potential 

(2.17) 

where Yo is the reference Liouville or von Neumann super-operator (E1 multiplied by 
the commutator with Ho). 

d 
itt zl$(t)) = V F  ( t ) I$( t ) ) .  

VF ( t )  = exp(iHot/h) v1 exp(-iHot/h) = exp(iTot) v1 
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Formal solutions of wave equations with time-dependent Hamiltonians can be 
written with the aid of the Dyson (1 949) chronological operator T. Thus, the solution of 
equation (2.16) becomes 

140)) = GkO, t ' ) l$( t ' ) )  (2.18) 

where the group Gr-"i,(t, t ' )  can be written as a time-ordered exponential, 

G k  ( t ,  t ' )  = T exp (2.19) 

Here, the superscript refers to the potential in the exponential while the subscript refers 
to the Hamiltonian associated with its motion. 

Equation (2.18) is a formal solution for the interaction picture wavefunction. By 
inverting equation (2.15), it also provides a formal solution of the Schrodinger picture 
wavefunction W(t) ,  

IT( t )) = exp( -iHot/ A) 1 $ ( t )) = exp( - iHo r /  A) Gk ( t, t '1 exp( iHot'/ A) I W( t ')) 
= (t ,  t)lq(r')). (2.20) 

The last line of equation (2.20) defines the group U:; (t ,  t'). Making use of equation 
(2.19), this group can be written as 

Ur-"i,(r, t ' )  = G k ( 0 ,  t ' - r )  exp[iHo(t'-t)/A]. (2.21) 

Using the group U,"(r, t ' )  instead of the exponential of the Hamiltonian in the prior 
and post scattering conditions, equations (2.3) and (2.8), the Mprller operators, can be 
written as 

a(*) = lim ~ , " ( t ,  t 1 - I  exp[-iK(t - t ' ) / ~ ]  = lim ~ g ( t ' ,  t )  exp[-iK(t - t ' ) / ~ ]  
f+TO2 f + T W  

= lim Gg(0, t - t ' )  = Gg(0, Too), (2.22) 
f + F W  

where the group properties of U,"(t, t ' )  and equation (2.21) have been used. In terms of 
the time-ordered exponentials, these operators are (see, for example, Child 1974) 

a'"' = T exp( (-i/A) ds V K  is)) (2.23) 
0 

where the time-dependent potential is defined by 

vK(s) = exp(iYCs) v 
= exp(iKs/A) V exp(-iKs/h) (2.24) 

and where YC is the kinetic (or drift) Liouville or von Neumann super-operator (A-'  
multiplied by the commutator with K ) .  In 8 3, a local (in position space) approximation 
to this operator is shown to be equivalent to the eikonal approximation. In terms of the 
group Gg(r, t ' ) ,  the scattering operator is (see, for example, Child 1974) 

S = a'-)'Ct"' = Gg(0, 00)+G;(0, -00) = G;(w, O)G,V(O, -CO) = Gg(00, -00). (2.25) 

2.2. Distorted operators 

In the standard approach the scattering condition, equation (1. l ) ,  is the crucial step. It 
allows the scattering wavefunction W ( r )  to be uniquely determined from a given free 
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wavefunction 4(t) .  However, this is not the only initial (post) condition that can be 
used. In the following, the distorted initial (post) condition, equation (1.2), is used 
instead. Thus, rather than being set equal in norm to a free wavefunction, the norm of 
the wavefunction “ ( t )  is equated asymptotically with that of a reference wavefunction, 
40(t) whose time evolution is given by 

(2.26) 

The distorted scattering conditions then define prior and post distorted Mprller opera- 
tors 

ai,”’= lim exp(iHt/h) exp(-iHOt/h)P,(Ho) = ~ ~ E ’ P , ( H ~ )  

bo(t))  = exp[-iHo(r - t’)/hIl4o(r’)). 

t+rm 

) 
0 

= (1 - (i/h) 1 ds exp(iHs/h) VI exp(-iHos/h) P,(Ho), (2.27) 

which are to be compared with the usual Mprller operators, a‘”’ (cf equations (2.4) and 
(2.9)). Making use of an identity similar to equation (2.5), namely 

exp(iHs/h) = exp(+iHos/h) + (i/h) 1‘ dt exp(iHot/h) VI exp[-iH(t - s ) / h ] ,  

the distorted Mprller operator ng’ becomes 

T W  

(2.28) 
0 

0 

Clg’ = P,(Ho) - (i/h) I-, ds exp(iHos/h)tD exp(-iHOs/h) (2.29) 

where the distorted transition operator (Levine 1969) is defined by 

fD = V1flg’ = V ~ ~ ~ ’ P C ( H O ) .  (2.3 0 )  

Similarly, the post distorted Moller operator ng’ satisfies the integral relationship 
33 

fig’ = P,(Ho) + (i/h) 1 ds exp(iHos/h)  VIR^' exp(-iHOs/h). (2.31) 

Equations (2.27), (2.29) and (2.31) are the time integral forms of the distorted 
Lippmann-Schwinger equations. In terms of the interaction picture group, G$ (t ,  t ’ ) ,  
these distorted Mprller operators become 

(2.32) 

The scattered wavefunction q ( r )  can be written in terms of the prior distorted 

IW) = n” ( t ) ) ,  (2.33) 

or it can be written in terms of the post distorted Mprller operator Cl:) and the outgoing 
reference wavefunction 4Gut(r), 

l q ( r ) )  = fiK)14Gut(r)). (2.34) 

These distorted Mprller operators are partial isometries if the Hamiltonian Ho supports 
no bound states. In general, though, the products of these distorted operators and their 
adjoints are 

ng”ng’ = P,(HO) ng”” = P J W .  (2.35) 

0 

SZg’ = G 2  (0, FCO)P,(H~) = fig’Pc(Ho). 

Mprller operator fig' and the incoming reference wavefunction 4: ( t ) ,  
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By combining equations (2.33) and (2.34) and using equation (2.35), the outgoing 

Pc(Ho)14?‘(t)) = n ~ ’ + n ~ ’ / 4 t ( t ) ) ~  sDI~;(~)) ,  (2.36) 

reference wavefunction can be written as 

in terms of the distorted scattering operator (Child 1974), 

(2.37) 

and the incoming reference wavefunction 4: ( t ) .  The projection Pc(Ho) ensures 4iut(t) 
is a scattering (continuum) wavefunction. Using equation (2.32), the distorted scatter- 
ing operator can be written in terms of the interaction picture group G$(t, t’) as 

(-’+ (+ I  
S D = f l D  SZD, 

SD = pC(Ho)G$ (a, -a)Pc(Ho) E ~ C ( H O ) S D P ~ ( H O ) ,  (2.38) 

a result which is comparable to equation (2.25) for the scattering operator S.  
The use of a procedure similar to that employed in the derivation of equation (2.14) 

permits the distorted scattering operator SD to be written in terms of the distorted 
transition operator tD defined by equation (2.30): 

m 

SD = fl~”flg’ = Pc(Ho) ds exp(iHos/h)tD exp(-iHos/h))Pc(Ho). (2.39) 

The unitary condition for the scattering operator S is paralleled by the condition 

SLSD = SDSb pc(H()) (2.40) 

for the distorted scattering operator. If the Hamiltonian Ho supports no bound states, 
then the distorted scattering operator is unitary. 

The distorted Moller operators were defined by the distorted scattering conditions, 
equation (1.2). The wavefunction q ( t )  was then related to the incoming and outgoing 
reference wavefunctions 4; ( t )  and 4:ut(l), equations (2.33) and (2.34) respectively. 
These reference scattering wavefunctions can themselves be related to the incoming 
and outgoing free wavefunctions &,(t) and dOUt(t) through reference Moller operators 
Ob“’ and Szh-’. In particular, the incoming reference wavefunction ~ $ ; ( t )  becomes 

14; ( t ) )  = nb“’I4in(f)), (2.41) 

while the outgoing wavefunction is 

hGUt(l)) = nb-’l4out(t)). (2.42) 

(2.43) 

(2.44) 

A comparison of equations (2.7) and (2.43) reveals that the Moller operator 0“’ is 
the product of the distorted Mprller operator fig) and the reference Moller operator 

a‘’’ = ni;’nd“ (=@no* (2.45) 

An algebraic proof of this relation is given in appendix 2. In a similar manner, the post 

nF’: 
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Mprller operator sZ‘-’ can be written as the product 

fy-’ = ng’nb-’~ fipfio* (2.46) 

In terms of the interaction picture groups, these Moller operators become 

n“’= Gk(0 ,  -CO)G$(O, -CO) (2.47) 

and 

a‘-’= GQ(0, W)G$(O, CO). (2.48) 

The scattering operator S defined by equation (2.12) becomes 

s = fp’f$+’ = nb-”g”fig’n~’ = fpts,fib‘“ (2.49) 

in terms of the reference Mprller operators and the distorted scattering operator SD. 
Levine (1969) has obtained a similar result. In terms of the interaction picture groups, 
equation (2.49) becomes 

S=G%(CO, O ) G ~ ( C O ,  -w)G$(O, -CO). (2.50) 

The scattering operator S was written in terms of the transition operator in equation 
(2.14). Now, using equation (2.39), it can be written in terms of the distorted transition 
operator t~ as 

00 

S = S O -  ( i /h)  ds exp(iKs/h)Rb-”tDnb”) exp(-iKs/h) (2.51) I_, 
where the reference scattering operator SO is SO = sZb-”nb“. 

3. Eikonal approximations 

3.1. Straight-line trajectory 

The Mprller operator a“’ has been written in terms of the motion group G:(t, t’) (see 
equation (2.22)). Turner and Dahler (1980) have shown that, in terms of a rectilinear 
trajectory, the time-dependent potential VK (s), equation (2.24), can be written exactly 
in the form 

VK(s )=  h-3 d X  d Y  dPexp[-iP.  ( X -  Y)/h]lY)V[t(X+ Y)+Ps/p](Xl .  (3.1) 

Here p is the reduced mass. Furthermore, the scattering operator is related to the 
interaction picture motion group by equation (2.25). 

Rather than using the exact form of the potential V“(s), equation (3.1), in the 
Mprller or scattering operators, a local (in position space) approximation can be 
introduced. To localise VK (s) the momentum P in the rectilinear trajectory [ i (X  + 
Y) + Ps/p] is replaced by a constant momentum P” (Turner and Dahler 1980). The 
resulting localised potential is 

VKsL(sIP”) = I dXlX)V(X +P”s/p) (XI .  (3.2) 
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Using V"L(sIP") in lieu of V"(s) in equation (2.22) defines the Moller operator 

12n(+)(P'r)EA T exp( -(i/h) 1-1 ds VKsL(slP")) 

= IdX1X)Texp ds V ( X + P " s / p ) ) ( X I  

Because the potential V"L(sIP") is local in position, so also is the exponential occurring 
in 12i+)(P")EA. Here, as illustrated by the second line of equation (3.3), one encounters 
the time-ordered exponential of a function which is, of course, the usual exponential. 
Consequently, the last of the expressions in equation (3.3) is the exact form of the 
Moller operator associated with the localised potential VKsL(sIP"). This operator is 
local in position space and is parametrised by a momentum P". The corresponding local 
eikonal scattering operator is 

m 

S(P")EA= I d X / X )  exp( -(i/h) I -a? ds V ( X  +P"s /p ) ) (X~ .  (3.4) 

A scattering wavefunction 9 ( t )  associated with the Hamiltonian H is given by 
equation (2.7) in terms of the Moller operator l2'" and the incoming free wavefunction 
&"(t). This incoming free wavefunction is parametrised by the average momentum, P', 
of the free system. A corresponding eikonal wavefunction is defined by the expression 

lv(t)FA) = n ' + ' ( ~ ' ) ~ ~ l ~ ~ , , , ~ ( t ) )  (3.5) 

where the momentum which parametrises the eikonal Moller operator is identified with 
the average momentum associated with the incident free motion. 

In the special case that the incoming free momentum is known exactly, that is, 
ldln,P,(r)) = /I"), then the eikonal wavefunction (see, for example, Schiff 1968) becomes 

- -- h - 3 / 2  \-I dz I d2Blz, B )  exp[ (i/h)( zP' -  ( p / P ' )  \' dz' V ( B  + z ' f i ' ) ) ]  
--oo 

(3.6) 

where the position X has been written as B + z @ ( B .  8' = 0). Similar results are 
obtained for the outgoing free wavefunction dout( t ) .  

From the viewpoint of the collisional operators the eikonal approximation is local in 
position space and is parametrised by the average incoming free momentum. Further- 
more, this approximation involves the use of rectilinear trajectories. In § 3.2, the 
generalisation to distorted (classical) trajectories is made by means of the formal 
distorted operators given in 8 2.2. A comparison with the distorted eikonai approxi- 
mation of McCann and Flannery (1975) is also made. 

3.2. Ristorted trajectory 

In § 3.1, the Hamiltonian H was written as the sum of a kineticenergy K and apotential 
energy V. Now, the potential energy is split into a reference potential Vo and the 
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remainder V1. Associated with this form of the Hamiltonian is the distorted Maller 
operator, equation (2.32), and the distorted scattering operator, equation (2.38). These 
operators involve the time-dependent potential V P  ( t ) ,  equation (2.17). Turner and 
Dahler (1980) have obtained the operator 

Vl(s)CTA = hV3 

which is the correspondence principle analogue of the classical observable 
exp(i2'o,cMs) V1. Here Ro(sl$(X + Y ) ,  P) is a classical trajectory in configuration space 
which satisfies the initial condition ($(X + Y), P) and is generated by the classical 
reference Liouville super-operator 2 ' 0 , ~ ~  (Poisson bracket with the reference Hamil- 
tonian Ho). The operator Vl(s)CTA is the classical trajectory limit of V? (s). It is a 
nonlocal operator which depends upon time through the uniquely determined classical 
position trajectory Ro(sI&X + Y), P). 

As with the straight-line situation (cf equation (3.1)), it is possible to localise the 
operator Vl(s)CTA by randomising the initial momentum P. The distorted analogue of 
the localised potential VK3L(sIP'f) is then 

d X  d Y  d P  exp[-i(X - Y) . P/h]lY)Vl[Ro(sl$(X + Y), P)](XI, I I  (3.7) 

Vl(sIp')crA.L = (3.8) 

Using the local potential Vl(s/P")CTA'L in equation (2.32), the (classical trajectory) 
eikonal distorted Maller operator becomes 

(3.9) 

Also, the (classical trajectory) eikonal distorted scattering operator is 
00 

SdP"IEA = I dXPc(Ho)lX) exp( - W h )  I-, ds V1[Ro(s/X, P")l)(X~~,(H0) 

= Pc(Ho)s,(p")"AP,(Ho). (3.10) 

Scattering wavefunctions q ( t )  are related to the distorted Moller operator and the 
incoming reference wavefunction 4: ( t )  by equation (2.33). As with the free incoming 
wavefunction &(t ) ,  there is an average momentum P' associated with the initial 
reference wavefunction q5$ (t). However, unlike the free situation, the average 
reference momentum is not a constant in time. For purposes of defining a distorted 
eikonal wavefunction the momentum P" which parametrises f2g)(P'f)EA is taken to be 
the given initial ( f  = t ' )  average reference momentum P'. The distorted eikonal 
wavefunction is then 

/ q ( t ) F E A )  = o ~ ' ( P ' ) ~ ~ I ~ & ,  ( t ) )  

where the incoming reference wavefunction has been assumed to be a scattering state. 
A similar result links the outgoing reference eikonal wavefunction, the distorted 
eikonal scattering operator and the incoming reference wavefunction. 
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Rather than dealing explicitly with the reference wavefunctions, a return to the free 
incoming and outgoing wavefunctions can be made through the reference Moller 
operators Ob“’ and Ob-’. In particular, the Moller operator a‘+’ is given by the product 
of the distorted Moller operator and the reference Moller operator, equation (2.45). A 
double eikonal approximation to the Moller operator O“’ is now defined by using 
eikonal approximations to both operators in equation (2.45). The result of this is the 
operator 
aZ‘+)(pu)DEA ~ f i g ) ( p ) E A f i b + ) ( p u ) E A  

=I d X / X )  exp( -(i/h) 1-1 ds[Vl[Ro(slX, W1-t VO(X+P”S/F)I)(X~, 

(3.12) 

where only one constant momentum P“ has been used to parametrise the eikonal 
Moller operators. It is, of course, possible to parametrise each operator with a different 
value of the momentum. As with the eikonal Moller operator, equation (3.3), the 
double eikonal Moller operator is local in position. 

The double eikonal wavefunction 

(3.13) 

is obtained by using equation (3.12) in equation (2.7). If the free incoming wavefunc- 
tion l & , p , ( r ) )  is given by IP‘), then the double eikonal wavefunction becomes 

0 

1 9 ( r ) F D E A )  = h-3’2 dXIX) exp[ ( i /A)(  X. PI- 1 ds Vl[Ro(sIX, P’)] 
-m 

(3.14) 

cf equation (3.6). In contrast to this double eikonal approximation, the distorted 
eikonal approximation of McCann and Flannery (1975) is defined by 

f i (+ j (pr t )MF = f i g ) ( p u ) E A ,  (3.15) 

It corresponds to dropping the reference potential term in equation (3.14) or, 
equivalently, to replacing the incoming reference wavefunction 4 t P ,  ( t )  with the 
incoming free wavefunction &,P,(f)  in equation (3.1 1). 

In the following section an internal degree of freedom is introduced to give the 
multichannel eikonal approximations of McCann and Flannery (1975). The approxi- 
mation scheme is completed by decoupling the internal and translational motions. This 
decoupling is accomplished by completely randomising the initial conditions of the 
trajectories. The resulting decoupled approximations define the class of sudden 
approximations. 

4. Multichannel eikonal and sudden approximations 

An internal degree of freedom is now added to the system. The Hamiltonian H 
becomes the sum of the isolated internal Hamiltonian Hint, the reference Hamiltonian 
HO and the potential VI. For convenience, Ho and Hint are assumed to commute so that 
the potential VI is responsible for the coupling between the translational and internal 
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motions. Thus, VI is an operator on both the translational and internal motions. The 
group G%(t, t’) is replaced by the group G%(t, t’) which involves the potential 

(4.1) 

where Yint is the isolated internal Liouville or von Neumann super-operator (h-’ 
multiplied by the commutator with Hint). Reference operators such as ab“ act only on 
the translational motion. 

U? (s; S) = exp(izints) V F  (s) = eXp(iHi,ts/h) V F  (s) exp(-iHints/h) 

4.1. Straight-line approximations 

When the reference potential V0 is zero, the Moller operator CL“’ becomes 

(4.2) 

while the multichannel eikonal Moller operator equivalent to the results of McCann 
and Flannery (1975) becomes 

Equation (4.3) was obtained from equation (3.1) by replacing V1(X + P f ’ s / p )  with 
U1(X + P s / p  ; s) = exp(iTjnts) V1(X + P s / p ) .  Unlike the translational situation, 
summarised by equations (3.3) and (3.4), U1(X + P ” s / p  ; s) is an operator on internal 
states and, thus, the time-ordered exponential is not equal to the time-disordered 
exponential. The multichannel eikonal approximation, equation (4.3), is a local (in 
position space) translational operator and, in general, a nonlocal internal operator. In a 
similar manner, the multichannel eikonal scattering operator is 

m 

S(Pf’)EA= T I dXIX) exp ( -(i/h) I_, ds U l ( X + P ” s / p ;  s ) ) (X l .  (4.4) 

To borrow the terminology of the sudden approximation theory (see, for example, Pack 
1972), infinite and first-order multichannel eikonal approximations can be defined 
depending upon the treatment of the internal motion. 

The translational and internal spaces are, of course, decoupled in the incoming free 
wavefunction. A further approximation to the eikonal Moller (or scattering) operator 
which decouples the interacting motion can be made. This decoupling is obtained by 
randomising the position X in the trajectory ( X  +P”s/p) (Turner and Dahler 1980). A 
reasonable and standard choice (see, for example, Levine 1969) for this position is the 
initial impact parameter B.  Making this substitution, the multichannel eikonal Maller 
operator reduces to 

n(+’(P”)EA= T I  d X / X ) ( X /  exp( -(i/h) lo ds U1(B +P”s/@; s) 
-m 

3 ltra(+’(B, P ’ y A ,  (4.5) 
which is the product between the unit operator on the translational space, l,,, and the 
general sudden Maller operator 

(4.6) 
0 

R“’(B, = T exp( (-i/h) ds U1(B + Pf’ s /p  ; s) 
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In a similar manner, the multichannel eikonal scattering operator reduces to 

S(P”)EA= l,, S(B, PlyA, (4.7) 
in terms of the general sudden scattering operator (see, for example, Stallcop 1974) 

m 

S(B, T exp ds U 1 ( B + P ” s / ~ ;  s)  (4.8) 

Generally, sudden approximations are either defined as the time-disordered exponen- 
tials (first-order Magnus approximations) or they are defined according to the treatment 
of the internal motion. Here, it is noted that the crucial step is the decoupling of the 
internal and translational motions irrespective of the time ordering or the treatment of 
the internal states. 

These sudden operators act on the internal space only and are parametrised by a 
given but riot unique straight-line translational trajectory. In the standard derivation of 
the sudden operators the randomisation of the initial conditions of the trajectory is done 
in one step. Here, it has been seen that a two-step procedure of randomisation gives the 
eikonal operators as intermediates between the exact and sudden cases. 

Since the eikonal operators reduce to products of translational and internal opera- 
tors in the sudden limit, the resulting wavefunctions become tensor products of the 
translational and internal wavefunctions. In particular, the sudden scattering wave- 
function is 

IT( t)”) = 1 4 i ” , P , ( t ) )  0 fl‘+’(B, P’)SA14j,”, ( t ) ) .  (4.9) 
Similar results are obtained for the sudden outgoing free wavefunction. In the 
straight-line trajectory case the sudden approximation treats the translational motion 
as if it were free motion. The internal motion is then parametrised by a straight-line 
trajectory. 

4.2. Distorted approximations 

Distorted multichannel eikonal M ~ l l e r  and scattering operators can be obtained in a 
manner similar to the straight-line results. Thus, in terms of the classical reference 
(configuration space) trajectory Ro(s IX, P”), these operators can be written as 

and 

(4.11) 

respectively. Double multichannel eikonal and distorted multichannel eikonal 
(McCann and Flannery 1975) approximations follow from these in a straightforward 
manner. 

As with the straight-line cases, these eikonal operators can be reduced to products 
of translational and internal operators by randomising the position X in the reference 
trajectory Ro(s lX, P”). The multichannel eikonal distorted Moller operator reduces to 

ag’(P”)EA = W ( B ,  P”)SAP,(Ho), (4.12) 
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while the multichannel eikonal distorted scattering operator becomes 

SD(P”)EA = SD(B,  zJ”)SAPc(Ho). (4.13) 

This factorisation is possible because the reference Hamiltonian was assumed to be a 
traiislational operator only. The sudden distorted Maller operator is 

while the usual sudden distorted scattering operator (see, for example, Levine 1969) is 

(4.15) 
m 

S(B, P”)SA = T exp( -(i/h) I ds U1(Ro(slB, P”); s)). 
--W 

The distorted sudden wavefunction 

pP(t)DsA) = Id’blp ( t ) )  0 ng’(B, P”)SAlc$i:, ( t ) )  (4.16) 

is then the tensor product of the incoming reference wavefunction and the distorted 
internal wavefunction Og’(B, P”)SAldk(t)). The distorted sudden approximation 
treats the translational motion as if it were the reference motion while it parametrises 
the internal motion with a reference classical trajectory. 

5. Eikonal super-operator approximations 

5.1. General formalism 

Let us return to the relative motion of two colliding structureless particles. The 
interacting statistical state S ( t )  and the free incoming statistical state sin(tlp”) are 
connected with one another by the relationship 

s(t) = flLSin(tlP”) (5.1) 

which involves the Mdler  super-operator (Snider and Sanctuary 1971, Miles and 
Dahler 1970) 

(5.2) 

Quantally, the statistical state S ( t )  is the density operator p ( t ) .  For free motion, the 
statistical state (density operator) sin(tlp”) has motion generated by the kinetic Liouville 
or von Neumann super-operator YC,. It is parametrised by the constant average 
momentum p ” .  The difference between 2Q and XQ is the potential super-operator VQ. 
Classically the statistical state S ( t )  is a distribution function. For convenience the 
classical operators on phase-space functions are termed super-operators since their 
quantal counterparts are super-operators. The classical free distribution function 
si,(tlp”) has motion generated by the Liouville super-operator Y ~ C M  and is also 
parametrised by a fixed value of the momentum p ” .  Again, the difference between p ( e , ~  
and XCM is the classical potential super-operator VCM. 

As with the Mdler  operator, the Maller super-operator can be written in terms of 
the interaction picture group %g(t ,  f’), namely 

RL= r-t-m lim exp(i2t) exp(-iYtt). 

fl, = %g(O, -00) = T exp (5.3) 
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Here, the time-dependent potential super-operator is 

V(s) = exp(i7Cs)‘V exp(-iYCs). (5.4) 

This formulation is valid for both mechanics and is used to define the eikonal Moller 
super-operator. In 0 3, the eikonal Moller operator was obtained by randomising the 
initial momentum in the straight-line trajectory associated with the group Gg(t,  t’) .  
Thus, the eikonal Moller super-operator is defined as 

. .o 
fiL(p‘f)EA= T exp( -i J -02 ds ‘V(s lp”) ) .  ( 5 . 5 )  

Here the initial momentum of the straight-line trajectory associated with Y(s)  is 
randomised to define ‘V(s1p”). Explicit forms of these super-operators are now given 
for both mechanics. In particular, in § 5.2 the eikonal Moller super-operator is shown 
to be equivalent to the eikonal Moller operator. 

Finally, the eikonal statistical state is defined as 

s(t)EA = aL(pf’)EAsin(f jp”) (5.6) 

where the momentum p ”  which parametrises OL(p‘’)EA is taken to be the average 
momentum of the incoming free statistical state. 

5.2. Quantal eikonal M N e r  super-operator 

The eikonal Moller super-operator was defined abstractly by equation (5 .5) .  To 
evaluate this approximation explicitly a representation is required. Here, the Weyl 
(1927) correspondence (Wigner (1932) equivalence representation) is used to define a 
phase-space representation. In terms of the operator 

A ( r , p ) = l  dR exp(- iR.p/Zz) lr-4R)(r+~R/ 

= J d P  exp(iP. r / h ) l p  - 4 ~ ) ( p  + + P I  (5.7) 

defined by Leaf (1968), the statistical state (density operator) S ( t )  is represented by the 
Wigner function 

F(r,  Pit) = a((r, PIS(d))Y 

= h-3  Tr A(r, p ) p ( t )  ( 5 . 8 )  

where Ir, p ) ) ~  (= hV3A(r,  p ) )  is an ideal observable-space element (see, for example, 
Turner 1978). An observable A ( t )  is represented by 

(5.9) 

where lr, p ) ) ~  (= A(r,  p ) )  is an ideal statistical-state space element. These ideal elements 
are complete, bi-orthonormal and define a representation, namely the Weyl cor- 
respondence. 

In this phase-space representation super-operators become kernels of integral 
equations. For example, the von Neumann equation for the density operator 

(5.10) 

a(r ,  pit) = ~ ( ( r ,  plA(t))h = Tr A h  p ) A ( t )  

dp (t)/dt = -iZQp ( t )  



Comments on eikonal and sudden approximations 2095 

is represented in phase space by the integro-differential equation 

d 
-F(r, p i t )  = -i dr’  dp’& pIz&’ ,  p‘)).&r’, p’b) dt 

(5.11) I 
where the phase-space representation of the super-operator ZQ is 

&, p l 4 r ’ ,  p ’ ) ) v  = h-3  Tr &, pWQA(r’, $1. (5.12) 

To obtain the phase-space representation of the quantal eikonal Maller super- 

vQ(s)  -exp(iXQs)VQ exp(-.iXQs) = ~-‘[v(s) ,  ]- (5.13) 

is required so that the corresponding eikonal super-operator V ~ ( s 1 p ” )  can be defined. 
In particular, the phase-space representation of V&) is 

operator the representation of the Liouville potential super-operator 

O((r, plVQ(s)lr’, p’))Y = O((r+Ps/p~, PlyQlr’+p’S/p, p’))9 

= ~ ( 2 / h ) ~ S ( r + p s / p  - r ‘ - p ’ s / p )  d R  exp[2iR. ( p ’ - p ) / h ]  

(5.14) 

in terms of the straight-line trajectories r + p s / p  and r’+p’s/p.  The super-operator 
VQ(sIp”) is then defined by replacing the momenta p and p ’  in these trajectories with the 
fixed momentum p ” ,  namely 

&, pIClrQ(slp”)lr’, p‘))sp 

I 
x (V( r  + R  + p s / p )  - V(r - R  + p s / p ) )  

= ~ ( 2 / h ) ~ S ( r  -r’) d R  exp[2iR. ( p ’ - p ) / h ]  

(5.15) 

This super-operator is local in position but nonlocal in momentum. Thus, the phase- 
space representation of the quantal eikonal Maller super-operator, equation ( 5 . 5 ) ,  is 

J 
x ( V ( r + p ” s / p  + R ) -  V(r+p”s /p  -R)). 

d r ,  pl~L(p“):*,Alr’, p’))9 

= K 3 S ( r - r ’ )  d R  exp[-iR. ( p - p ’ ) / h ]  I 
It is local in position. The equivalence of this quantal eikonal Maller super-operator 
with the eikonal Maller operator can be obtained by using the relation (Jauch et al 
1968, Turner 1977) 

f l L , Q p  = fk‘+’p a“” (5.17) 

between the Maller super-operator and the Mprller operator. Associated with the 
eikonal Maller operator, equation (3.3), is the Maller super-operator 

n;,,p,,, = a‘”( p”)E*pp.n‘+’(p’~)”*’ (5.18) 
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whose phase-space representation is 

b((r, plflk,Qlr’, p’))Y 

= h M 3  Tr A(r, p)fln(t)(plr)EAA(rl, pl)fln(+)(pl’)EAt 

= h - 3 S ( r - r 1 )  d R  exp[-iR. ( p - p ’ ) / h ]  

0 

I 
( I, x exp( - i/h) ds(  V(r  + p ” s / p  +&) - V(r + p ” s / ~  -iR))) 

(5.19) I I  EA I 
= d r ,  plfldp Ir , p ’ h ~ ,  

a result which demonstrates the equivalence of Cl‘”( proEA and fl~(p”)G~. 
Equation (5.16) is the super-operator equivalent of the usual eikonal approximation 

of quantum scattering theory. Here, the eikonal approximation has been written in a 
form that readily admits a classical limit. In particular, writing hr for R, the quantal 
eikonal Mprller super-operator becomes 

I I  EA I I O((r, plnL.(p )Q Ir p ))Y 

= ( 2 ~ ) - ’ ~ 8 ( r  - r l )  d r  exp[-iz. ( p  - - p ’ ) ]  I 
0 

x exp( (-i/h) I-, ds(V(r  + p “ s / p  + hz/2) - V(r + p ” s / p  - hz/2))), 

(5.20) 

where Planck’s constant appears only in the potentials. Expanding the potentials in 
Taylor series about the trajectory gives 

h-’( V ( r  +p”s /p  + hz/2) - V ( r  +pI’s/p -hz/2)) = -2. F ( r  + p ” s / p )  +O(h)  (5.21) 

where F(r) is the force -aV(r)/dr. The classical limit of the quantal eikonal Moller 
super-operator is then 

(5.22) 

It is local in position but the momentum is displaced by a time integral of the force 
evaluated with a straight-line trajectory. In the following section it is shown that this 
classical approximation is equivalent to the classical result obtained from direct use of 
the classical super-operator in equation (5.5). 

5.3. Classical eikonal Miflier super-operator 

The classical eikonal Mgller super-operator was obtained in the last section as the 
small-h limit of the quantal super-operator. It can also be obtained directly from 
equation (5.5) using the classical phase-space representation. In particular, the phase- 
space representation of YCM(S) is given by 

a 
~ ( ( r , p I ~ ~ M ( s ) l r ’ , p ’ ) ) Y =  - * ( r + p s / p )  . - 8 ( p  - p W ( r - r ‘ )  (5.23) 

8P 
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in terms of the force F. This super-operator also contains the trajectory r + p s / p .  As 
with the quantal case, the super-operator VCM(sIp”) is defined by replacing the 
momentum p in the trajectory with the constant momentum p ” ,  namely 

It is the classical limit of “Ir~(s1p”) .  Using equation (5.24), the classical eikonal Mprller 
super-operator, equation (5.5), becomes 

a 
aP 

0 

=exp( -I, d s F ( r  + p f ’ s / p ) .  - ) a ( r - r ’ ) a ( p  - p f )  

0 

= G ( r - r ’ ) S ( p - p ’ - j - m  d s F ( r + p ” s / y ) )  (5.25) 

where the exponential has been identified as the Taylor series. 

classical Mdler  super-operator, 
This classical eikonal Mprller super-operator can be compared with the exact 

Here, p(s i r ,  p )  and r(slr, p )  are classical trajectories (solutions of Hamilton’s equations) 
with initial conditions p(Olr, p )  = p and r(Olr, p )  = r. Physically, starting with the phase- 
point ( r , p ) ,  the motion is traced backwards along the interacting path until it is 
asymptotically free and then forward along a straight-line path (with momentum 
p(-wlr ,  p ) )  for an equal time period until it ends at the phase-point (r’ ,  p ’ ) .  

The eikonal approximation to the Moller super-operator, equation (5.25), can be 
obtained from the exact Moller super-operator, equation (5.26),  by replacing the 
trajectories r(slr, p )  and p(s l r ,  p )  with the parametrised straight-line trajectories r + 
p“s/y and p ” .  In this case, the position and the momentum in the Mdler  super- 
operator are treated differently. Starting at r, the position is traced backward along a 
straight line into the distant past and then forward along the same straight-line path for 
the same time to end up at the same starting position, r’ = r. Thus, the eikonal 
approximation treats the position as being unaffected by the presence of the scattering 
event. This also holds for the quantal case. On the other hand, the momentum is 
treated differently. Starting at p ,  the momentum is traced backward along a curved 
trajectory (due to the force evaluated with the straight-line trajectory r + p ” s / p )  to the 
distant past and then forward with the constant momentum p -J:, d s F ( r  +p“s/y) to 
p ’ .  It is through the momentum dependence that the classical and quantal eikonal 
approximations differ. 
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6. Discussion 

Distorted scattering conditions, equations (1.2), have been used to formally define 
previously identified (see, for example, Levine 1969, Child 1974) distorted Maller 
operators and, thus, distorted transition and distorted scattering operators. These 
operators have been written in their time-integral representations (rather than the 
energy-parametrised Lippmann-Schwinger forms) and have been related to the inter- 
action picture motion group. 

Some properties of the distorted operators have been discussed. For example, the 
distorted scattering operator SD is, in general, not unitary (see equation (2.40)). This is 
a direct consequence of the fact that the distorted Mdler  operators are not, in general, 
partial isometries (see equations (2.35)). The usual Mdler,  transition and scattering 
operators have been written as products of distorted and reference operators. 

A systematic approximation scheme starting with the Mdler and scattering opera- 
tors (written in terms of the interaction picture motion group) and leading to the eikonal 
and sudden approximations has been presented. In the first stage of the approximation 
scheme, i.e. the eikonal approximation, the collisional operators have been localised in 
position space. This localisation was accomplished by randomising the initial momen- 
tum of the trajectory involved in the interaction picture motion group. In the second 
stage of this scheme, the initial position of the trajectory was randomised. The resulting 
sudden operators involved decoupled translational and internal motions. Distorted as 
well as straight-line approximations have been considered. 

The standard eikonal approximation of binary (relative) quantum collision theory 
has been related to the density operator approach. It has been found that the eikonal 
Moller super-operator is equivalent to the eikonal Mdler  operator and, thus, that the 
eikonal density operator is equivalent to the eikonal wavefunction. The classical limit 
of the eikonal Mprller super-operator produces a phase-point to phase-point particle 
picture of the eikonal approximation. Straight-line eikonal approximations have been 
considered. Following the formal definitions of the distorted Moller operators, dis- 
torted Maller super-operators can be defined. Distorted classical and quantal eikonal 
Moller super-operators then follow in manner similar to the straight-line approxima- 
tions presented here. 
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Appendix 1 

To obtain equation (2.14), which relates the scattering operator to the transition 
operator, the intertwining relation (Newton 1966) 

exp(iHt/h)R‘+’ = o(+) exp(iKt/h) (A.1) 

was used. Here a time-integral proof of this relation is presented. Using equation (2.4) 
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the left-hand side of equation (A. l )  becomes 

exp(iHt/h)fl‘+’ = exp(iHt/h) + (-i/h) J ds’ exp(iHs’/h) V exp[-iK(s’- t ) / h ] .  (A.2) 
-m 

A change of variable has been performed in the second term. Making use of an identity 
similar to equation (2.5), namely 

exp(iHt/h) = exp(iKt/h) - (i/h) ds’ exp(iHs‘/h) V exp[-iK(s‘- t ) / h ] ,  (A.3) 

equation (A.2) becomes 

exp(iHr/h)R‘+’ = ( 1  - (i/h) I ds exp(iHs/h) V exp(-iKs/h)) exp(iKt/h) 
0 

-m 

= a‘” exp(iKt/h), 

which is equation (A.1). 
(A.4) 

Appendix 2 

The Moller operator 0“’ was written in equation (2.45) as the product of the distorted 
Moller operator fig’ and the reference Moller operator Cl!,+’. An algebraic proof of this 
relation is now given. Using equation (2.27) the right-hand side of equation (2.45) can 
be written as 

0 

ng’nb“ = ( 1  - (i/h) I -W ds exp(iHs/h) V1 exp(-iHos/h))Pc(Ho)fi~’ 

0 

= 0d“- (ilk) [ ds exp(iHs/h) Vlnb+’ exp(-iKs/h) 
-m 

where the intertwining relations 

P,(HO)ny = R!,+’P,(K) = np 

(A.5) 

and 

exp(-iHos/h)Rd+’ = nF’ exp(-iKs/h) (‘4.7) 

have been used. Also, the projection onto the continuum of the kinetic energy operator 
K has been recognised as the unit operator. Now, using the integral form 

0 

Ob“’ = 1 - (i/h) ds’ exp(iHos’/h) Vo exp(-iKs’/h) I-, 
of the reference Moller operator ad‘), equation (A.5) can be written as 

ng’flg’ = ab+’-- (i/h) [ ds exp(iHs/h) VI exp(-iKs/h) 
0 

-X 

0 

+ (i/h)* Io ds I ds’ exp(iHs/h) VI exp(iHos’/h) Vo 

x exp[-iK(s’+ s ) / h ] .  

-x -CO 

(A.9) 
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The time s' in the last term of equation (A.9) is now defined as t' - s and the order of 
integration is changed. This term becomes 

-(i/h)2 lo dt'( lot' ds exp(iHs/h) VI exp(-iHOs/h)) exp(+iHOt'/h) V0 exp(-iKt'/h) 
-cc 

= -(i/h) 1-1 dt'[exp(iHr'/h) exp(-iHOt'/h) - 11 

x exp(iHOt'/h) V0 exp(-iKt'/h) 
0 

= -  i /h )  dt' exp(iHt'/h) Vo exp(-iKt'/h) + (i/h) 1" dt' 
( I, --a3 

x exp(iHOt'/h) Vo exp(-iKt'/h) 

= -(i/h) j-1 dt' exp(iHr'/h) V0 exp(-iKt'/h) + 1 -fig). (A.lO) 

Using equation (A.10) in equation (A.9), the right-hand side of equation (2.45) 
becomes 

(A.11) 
0 

Qg'sZb"' = 1 - (i/h) ds exp(iHs/h) V exp(-iKs/h) = a"', 
-W 

which is the desired relation. 
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